
AMR on the CM-2

Marsha J. Berger and Jeff Saltzman

The Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 311, Columbia, MD 244, (301)730-2656

Work reported herein was supported in part by the NAS Systems Division of NASA via Cooperative Agree-

ment NCC 2-387 between NASA and the University Space Research Association (USRA). Work was per-

formed at the Research Institute for Advanced Computer Science (RIACS), NASA Ames Research Center,

Moffett Field, CA 94035.





AMR on the CM-2

Marsha J. Berger
Courant Institute

251 Mercer Street

New York, NY 10012

Jeff S. Saltzman

Los Alamos National Laboratory
MS B265

Los Alamos, NM 87545

Abstract

We describe the development of a structured adaptive mesh algorithm (AMR) for the
CM-2. We develop a data layout scheme that preserves locality even for communication
between fine and coarse grids.On 8K of a 32K machine we achieve performance slightly
less than 1 CPU of the Cray Y-MP. We apply our algorithm to an inviscid compressible

flow problem.

1 Introduction

Local Adaptive Mesh Refinement (AMR) is an algorithm that can efficiently compute com-

plex flow fields where only a small fraction of the computational domain needs to be resolved.

Its success has been demonstrated over the last ten years in [1, 4, 3, 15, 20, 21]. A natural

question is whether this approach is still viable on massively parallel architectures. In par-

ticnlar, can we still take advantage of local regularity of the grids? Can the dynamic and

adaptive character of AMR be maintained while balancing the load on a fine grained data

parallel/SIMD machine such as the CM-2? A new issue not found on serial architectures is

minimizing inter-grid communication forced by the distributed memory.

In the last few years several adaptive unstructured mesh codes have been parallelized [7,

22, 17]. Unstructured mesh methods tend to have much different overheads and efficiencies
than structured mesh codes. Their data structures are lists of elements/edges, leading to

more words of storage per node than structured methods use. However, this generality and

flexibility lends itself to a natural extension to both coarse grained and fine grained parallel

architectures. The issues in the parallelization of unstructured methods are the creation of

subdomain partitions, and the mapping of the partitions onto individual processor nodes to

minimize global communication and balance the load. The communication costs seem to be

the major source of inefficiency in these codes, even for non-adaptive unstructured parallel

codes. For example, Barth and Hammond [14] report 50% of the run time on the CM-2



is spent in communications tasks. The free-Lagrange code X3D [7] has been measured to

spend 93% of its time in communication [18].

In contrast, very little work on structured meshes has been done. Gropp and Keyes have

developed interesting algorithms for adaptive elliptic equations on semi-structured meshes

[13]. Similar looking meshes are found in the parallel AFAC algorithms of [19]. Dynamically

adaptive parallel algorithms for hyperbolic equations on quad tree data structures have been

developed in [5, 6]. This work uses a coarse grained model of parallel computation, with

the parallelization coming from different ways of traversing the tree.

Most other work on parallelization of adaptive structured meshes, to our knowledge,

has targeted AMR, and uses coarse-grained paraUelization on small numbers of processors.

Since the data structures in AMR keep track of entire grids, rather than individual grid

points, a natural approach here is to distribute the grids to different processors. Berger

[2] has done this on a shared memory Cray X-MP4/16, and Crutchfield [10, 11] on a 32

node BBN TC2000. Neither of these approaches can take advantage of massively parallel

computers. Our largest 3D application so far has used on the order of 500 grids at a given

time. Even allowing for future applications with several thousand grids, this coarse grained

approach would not scale well for a machine with several thousand processors or more.

We have developed a data parallel implementation of a 2-D AMR code for the CM-2.

(For a discussion of the CM-2 architecture see [16].) In this approach the individual points

in a grid are distributed to processors. The key idea in our strategy is the data layout.

We map the points of grids on different levels to minimize intergrid global communication

and preserve locality. In addition, the serial algorithm was modified in several ways, in

particular, we have restricted the adaptive grid patches to be a fixed size. We compare the

efficiency of our implementation on an 8K CM-2 with a functionally equivalent implemen-

tation on a Cray Y-MP. We measure that the ratio of integration time to total CPU time

of a typical run approaches 75% on the CM-2 while this ratio on the Cray Y-MP is closer

to 85%. We also measure the grind time of our integration procedure, defined as the time

to update one grid point one timestep. This is roughly equivalent to the Cray Y-MP time.

Thus, our performance on an 8K CM-2 is slightly less than one head of a Cray Y-MP.

Our work was hampered by inadequacies in the CM slicewise Fortran compiler. There

are additional opportunities for a coarser grained parallelism to be used on top of the

fine grained parallelism, within the data parallel framework. Unfortunately, we could not

exploit it because version 1.1 of the slicewise compiler does not parallelize/vectorize the

outer loop of a serial dimension. However, even without this additional parallelism we

have demonstrated the viability of the fine grained approach using the current compiler

technology. Future releases of the CM Fortran compiler may lead to further exploitation of

parallelism, as will extensions of our work to the CM-5. We hope that future releases also

include richer array section constructions, and more flexible alignment and layout directives;

the lack of which led to considerable programming headache during the course of this work.

The paper is organized as follows. Section 2 gives a brief overview of the serial AMR

2



algorithm. Section 3 describes the data parallel version of the algorithm. The important

points here are the data layout and grid generation. Section 4 discusses implementation

details pertaining to the CM-2. Section 5 gives timings of the performance of the integra-

tor alone and the overall AMR algorithm. We describe the numerical simulation of laser

trenching in an integrated circuit substrate using a 2-D gas dynamics approximation of the

physics in a simple geometry. In the conclusion we have several recommendations and a

discussion of the parallelism we currently cannot exploit and its potential impact on the

performance of the algorithm.

2 Overview of the AMR Algorithm

The AMR algorithm uses a nested sequence of rectangular grids to approximate the solution

to a partial differential equation. The state variables are cell-centered, and an explicit finite

volume scheme updates these values by computing fluxes at cell edges:

When the solution resolution is insufficient, rather than refining a single grid cell at a

time, rectangular fine grid patches are generated to cover those cells that need additional

refinement. These grid patches have their own solution storage, with minimal storage

overhead needed to describe the location and size of the grid itself. Grids are properly

nested and aligned with each other, i.e. for every cell in a level l grid there is at least one

level l- 1 cell surrounding it in all directions, although these coarse cells may belong to

different grids. The grids are not rotated with respect to each other. Note that a fine grid

can have more than one parent grid (see figure 1).

Each grid level has its own time step. Typically, if a grid is refined by a factor of 4,

the time step is refined by a factor of 4 because of time step stability restrictions. The

integration procedure on such a grid hierarchy then proceeds recursively: integrate on the

coarse grid (ignoring fine grids); then use the coarse grid values with space time interpolation

to provide boundary conditions for fine grids so that they, too, may be advanced in time.

The algorithm is recursive in that the fine grid is in turn used in advancing still finer grids.

There are four separate components to the AMR algorithm that together generate this

adaptive mesh hierarchy and advance the solution. For a complete description of the AMR

algorithm see [1, 3]. The error estimator decides where the solution accuracy on a given

grid level is insufficient and tags those grid cells as needing refinement. The grid generator

creates mesh patches that cover all the flagged points. It takes as input the set of tagged

points from the error estimator, and outputs a set of grid patches that together cover

all the cells needing refinement. The inter-grid communication happens in the following

two components. The interpolation routines initialize a solution on a new fine mesh, from



Figure 1: There is a singlelevel 1 grid, level2 has4 grids and level 3 has 2 grids in this

hierarchy.

either old fine meshes (injection) or coarser grids (interpolation), and they provide enough

boundary values for fine meshes so that the integration stencil can be used at every interior

point in a fine grid. The fluz correction routine insures conservation at grid interfaces by

modifying those coarse grid cells adjacent to a fine grid. We strictly enforce the condition

that the flux out of a coarse grid cell during a single coarse time step equals the flux into

the adjacent flue grid cells over all the corresponding fine time steps. This component also

includes what we call updating; the fine grid cells update the coarse grid cell "underneath"

using a conservative, volume weighted average of the fine grid values.

We typically use a high-order Godunov method to integrate a system of conservation

laws [8, 9]. The integrator can be operator split or unsplit, the system of equations can

be augmented by passively advected quantities, such as for multiple species, and the AMR

shell doesn't change.

3 The SIMD AMR Algorithm

In our data parallel version of the AMR algorithm, individual grid points rather than entire

grids are mapped to processors. We make the restriction that all grid patches are a fixed

size. This allows us to design a data layout scheme for mapping points to processors to

minimize inter-grid global communication and preserve locality. This is the key idea in our

approach.

The grid size restriction is motivated by the following considerations. When we first

considered the mapping of grids to processors, we thought several grids of varying sizes

4



Figure 2: Three levels of grids are shown; each has the same number of grid points.

might be integrated at one time. A multi-dimensional type of bin packing could be used to

group the fine grid patches to fill up a two-dimensional view of the machine. However, the

CM-2 at NASA Ames Research Center has 32K processors. One quarter of the machine

(the typical amount attached to a sequencer) has 8K processors, but only 256 floating point

units. This corresponds to a 16 by 16 mesh. To keep the floating point pipes full requires

a minimum of 4 grid points per processor. Hence a single 32 by 32 mesh can use one

quarter of the machine and a single 64 by 64 grid patch can use the whole machine. With

typical grid sizes in this range, a natural choice was to keep all grids the same size. In

practice, on the order of 16-32 points per processor are usually needed for peak machine

performance. Therefore, what fixed size is chosen is extremely important to the performance

of the algorithm. Can we find a tile size small enough to use effectively in an adaptive

setting, yet large enough to be integrated efficiently? In sections 4 and 5 we discuss the

ramifications and efficiencies of this decision. Figure 2 shows an example of three levels of

grids, each has the same number of grid points but smaller and smaller mesh widths, so

they occupy a decreasing amount of physical space.

Given this restriction of fixed sizes grids (either 32 or 64 in each dimension), we have

designed a data layout scheme for both the coarse and fine grids that preserves locality

and minimizes communication. The layout is best described using the following indexing

notation. We describe it using one space dimension. Higher dimensions use tensor products
of the one-dimensional case.



 OO lOtion111231415161718191101111111311411511Fine Cell Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

_e Cell Index 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Fine Cell Index 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Fine Cell Index 33 34 35 36 37 38 39 40 25 26 27 28 29 30 31 32

Table 1: Illustration of the mapping from grid points to memory location for the grids in

figure 3.

Each coarse grid cell in the computational domain is given a unique index. If the

computational domain consists of a single coarse grid with tile size 32, the cells are numbered

from 1 to 32. If there are 2 coarse grids in the computational domain, adjacent to each

other, the first is numbered from 1 to 32, and the second from 33 to 64. Suppose now there

is a single coarse grid, and it is completely covered by fine grid patches. If the refinement

ratio is 4, then 4 flue grids make up the computational domain. The i th fine grid will be

numbered from (i- 1). 32 + 1 to i, 32, corresponding to coarse grid cells (i- 1). 32/4 + 1

to (i - 1) • 32/4 + 8. Of course, the fine grids do not have to start at location that are

multiples of 32; for example a fine grid can be numbered from 25 to 25 + 32 - 1 = 56.

Given this numbering convention, we can describe the two different layout strategies for

the fine and coarse grids. (More precisely, the grid patch is mapped to a two-dimensional

view of memory using the usual CM compiler default mapping, but we "interpret" it in a

different way). Suppose for simplicity the tile size is 16. The finest grids are mapped to

memory so that cell i is in memory location i rood 16, or more precisely, (i - 1) rood 16 + 1.

In other words, the grids are periodically wrapped as they are mapped to the CM memory

so that adjacent cells from adjacent fine grids are in adjacent memory location. This keeps

the injection operation from grids at the same level completely local.

The coarse grid layout is the complicated one. Suppose the refinement ratio is 4. Then

cell 1 on the coarse grid corresponds to cells 1 through 4 on the fine level, coarse cell 2 to

fine cells 5 through 8, etc. To keep the coarse/fine grid communication local, the rows and

columns of the coarse grid are permuted so that no matter where the fine or coarse grid is

located, corresponding cells are within 4 of each other. This enables fast data movement

using nearest neighbor NEWS wires. For a single coarse grid as shown in figure 3, the

grid point to memory mapping is shown in table 1. Note that even for the second fine

grid, the corresponding coarse points are "nearby". For example, point 17 on the fine grid

is corresponds to cell 5 on the coarse grid, and is one memory location away. This same

correspondence holds regardless of where the fine grid is located, or how many coarse grids
there are.

This coarse grid permutation is derived by sequentially distributing the coarse grid

points, skipping 4 memory locations between points (for a refinement ratio of 4). When the

6



(1_.I@

(1.1)

Figure 3: One coarse grid with three refined grids, corresponding to the memory layout in
table 1. for a tile size of sixteen

end is reached, wrap around to the next available memory location from the beginning.

As often happens, an improvement to the serial AMR algorithm for proper nesting was

discovered by rethinking the algorithm for the SIMD implementation. The proper nesting

requirement for fine grids can be simply checked using a "domain calculus" with simple

logical operations and a bitmap of the domain. The description of the set of all grids at

a given level is simple to compute regardless of how complicated the domain at that level

is. Given a domain at a certain level, properly nested subgrids must be one cell away

from the boundary of the domain. Again this is simply computed with some shifts and

logical operations. Previous (serial) implementations used complicated testing along fine

grid boundaries to verify proper nesting.

The grid generation component of the AMR algorithm was greatly simplified by the use

of fixed sized tiles. The serial version uses a pattern recognition algorithm to find "edges" in

the tagged points; these edges form the edges of the new grid patches. (See [1] for details).

Although rather sophisticated, this grid generation algorithm used negligible run time, and

usually produced grids with approximately 80% efficiency, i.e., 80% of the points in the

new grids were tagged, only 20% were additionally included to keep grids rectangular. The

new grid generator simply tiles the smallest rectangular region bounding all the tagged cells

using the fixed size tiles. It may happen that tiles have no tagged points underneath them,

(for example, if the tagged points form a large circle and the tile is inside the circle). In this
case the tile is deleted. This unsophisticated approach produces refined grids around the

50% efficiency level. Also, the use of fixed size tiles and the requirement of proper nesting

may necessitate the use of overlapping grids. This rarely happens in practise, although it

does slightly increase programming complexity.
In the original work of [3], Richardson extrapolation was used to estimate the error in

the computation. This however had to be augmented by additional procedures depending

7



TwoDimensions ThreeDimensions

32 77% 56% 67% 42%

64 88% 77% 82% 67%

Table 2: Percentage ofinteriorcellsas a functionof tilesize

on the type of fluid flow being computed, for example, density gradients or compressibility

and divergence were computed. We use only the latter, more ad hoc estimates in this work.

4 Implementation Details

The implementation decision with the most impact on performance concerned the treatment

of ghost cells. To avoid special boundary stencils, each grid is surrounded by the additional

number of points needed to apply the same finite volume stencil everywhere. Our simplified

version of the high-order Godunov method uses 3 points to the side. These so-called ghost

cells, or dummy cells, are obtained from adjacent fine grids or interpolated from coarser

grids. Every grid contains space for these ghost cells along with the regular interior cells.

For a grid of size 32, if there are 3 ghost cells on each side, only 26 cells are left for what

we call the "real" interior grid cells. Since 26 is not divisible by 4 (our usual refinement

ratio), in fact we must allocate 4 ghost cells on each side (all 4 are actually used in the more

sophisticated version of the integrator).

Table 2 shows the fraction of interior cells as a function of tile size for 2 and 3 space

dimensions. As can be seen, in 3 dimensional calculations for 32 sized tiles the fraction

drops below 50%. In 2 space dimensions, 32 sized tiles is a possibility, although there are

other reasons to prefer the larger sized tile.

In section 5, we measure the eflidency of the algorithm using grind time (the time to

update one cell one timestep). The effective grind time is computed as the total CPU time

divided by the number of interior zones. Strictly speaking, almost all the work for updating

a cell must also be done at the first ghost cell, so this measure overestimates the grind

time. This is due to the fact that for n cells, there are n ÷ 1 fluxes, which use information

from both cells adjacent to it. The other ghost cells however are only used to calculate

slope information and to add a little extra artificial viscosity for problems with very strong

shocks. We investigated several approaches to eliminating the permanent storage of these

ghost cells, or alternatively, using slightly larger grids so that the interior grid mapped to the

fixed size tile, with borders that wrapped around the processor array. However, given the

restricted layout and alignment directives, these approaches were much slower than the 30

to 40% penalty paid by not using the ghost cell processors for the bulk of the computation.



This remains a problem with an unsatisfactory solution.

There are two ways we take advantage of the additional communication on the CM-2

beyond treating it as a mesh machine: we use Fastgraph and the power of 2 NEWS wires.

Although the calculation is adaptive, with most of the communication patterns changing

dynamically through the course of the computation, there is a pattern that does not depend

on grid placement and can be precomputed. The coarse grid is stored in memory using the

permuted, or shuffled memory layout described in section 3. However, every now and

then the coarse grid itself is integrated. For this step the solution is unshuffled, and then

reshuffled at the end of the integration step. Regardless of how many levels there are, or

where the grids are located, the permutation is identical (modulo the periodic offset). We

use the communication compiler Fastgraph [12] to precompute an optimized routing for

the shuffling operation and its inverse. Fastgraph itself is expensive to use, but it is only

called once, it depends only on the refinement ratio, and the routing may be saved between

runs, so we do not include Fastgraph in our run time results. Fastgraph saves a factor

of 2 in the shuffling time over using the router; this is approximately 5% of the total run

time on a typical run. Other users have reported much larger time savings when using the

communication compiler; we surmise that because the permutation itself is so simple, the

router does a good job of it to begin with. Nevertheless, for other classes of architectures

besides a CM-2, and other applications besides AMR, an optimized preconfigurable routing

would be extremely useful.

The second way we use the CM-2 as more than a mesh machine is with shifts (CSHIFT,

EOSHIFT) of more than 1 location at a time. This is useful in the updating step of the

AMR algorithm. For example, to compute the average of a 4 by 4 sub-block of fine grid

cells so that the result may be injected onto the coarse grid, we sum by using a shift of one

and then two in each direction. In the reverse procedure, the sum is logarithmically spread

back to all 16 fine cells, so that the one lying on top of the coarse cell can do the actual

injection. This reduces the number of shifts from 3 to 2 in each dimension for the sum and

the spread, with the run time for this routine reduced by 1/3 as well. Even the NEWS

network communication is much more expensive than floating point operations, and the

updating routines involve very little computation. We also experimented with segmented

scans (adds and copies), but found our implementation faster for such small segment lengths
as 2 or 4.

5 Numerical Results

We presenttwo types of measurement to indicatethe performance of the AMR algorithm

on the CM-2. First,we demonstrate the performance of the integratoras a functionofgrid

size,without any adaptivity.The performance of the overallalgorithm can be no better

than this,sincewe count allother CPU time as overhead in the algorithm.Next we show

9



PatchSize

32

64

128

256

1 byl

Integ. time

1.93

5.40

18.60

70.63

BC time

.96

3.25

7.34

20.87

2by 2

Integ. time BC time

2.27

7.56

29.05

73.84

Integ. time

4 by 4
BC time

7.76

21.55

74.55

281.56

30.69

86.45

298.82

1125.93

3.07

19.34

73.41

289.27

Table 3: CPU times with no refinement as a function of grid size and number of grids

numerical results and timings for experiments with 3 levels of grids. All the timings use the

CM timer with version 1.1 of the slicewise compiler with optimization, on one sequencer

attached to 8K processors of the CM-2 at NASA Ames Research Center. Our results show

only the CM CPU time; the elapsed time (the sum of CPU and idle time) varies greatly,

depending on how heavily loaded the CM/front end is. Our best idle times are typically

between 2 and 5% of CPU time, depending slightly on the grid size.

Table 3 shows the CPU time for the integrator and the periodic boundary condition

routine as a function of tile size. For this experiment we do not use any refinement (i.e.

only coarse grids at the base level), but we do use several grids at that level. Notice that for

patch sizes of 64 or more, doubling the number of points in each dimension gives integration

times that increase by a factor of 18.60/5.40 -- 3.4, and 70.63/18.60 - 3.7, unfortunately

less than, though close to 4. When we go from a patch size of 32 to 64, this is far from the

case (5.40/1.93 - 2.80). Although we would prefer to use the smaller patch size for greater

efficiency in resolving localized flow features in the solution, the extra cost of integration

on such a small patch makes this choice infeasible, at least for the current compilers. For 3

dimensional calculations, we expect this to change.

The time for the periodic boundary conditions is sublinear. With one coarse grid, peri-

odic boundary conditions must be applied at all four sides of the grid. This type of boundary

condition is the most expensive since data must be shifted approximately halfway across

the computational domain due to the ghost cells. (Reflecting wall boundary conditions are

less expensive, but since they must be computed inside the integrator , the interpretation

of the integration run-time as a function of tile size becomes more complicated.) When

there are several coarse grids in the computational domain, each grid also gets (interior)

boundary conditions from the adjacent grids, which is an efficient operation.

The grind times for this problem (microseconds per cell per update) are summarized in

table 4. For a given tile size, the grind times decrease due to the decreasing cost of the

periodic boundary conditions. For a fixed number of base grids, (looking down a column),

the grind times decrease due to the better performance of the CM-2 on larger blocks of

data. We feel that reasonable performance is possible with 64 sized patches, and use that

10



Pat Size6432lbYlp2bY214bY4285224452238128 19 19 17

256 15 15 15

Table 4:/_ secs to update one zone for one timestep (includes all overhead) as a function of
tile size

size in our the two dimensional calculations with adaptive refinement. Although the grind

time for a 64 sized patch is 50% more than the grind time for a 256 sized patch, the latter

has 16 times the number of points. The total cost of the computation will be cheaper using

smaller sized patches as long as there are fewer than 8 of them. (We hope to improve this

break even point with future release of the compiler).

We wrap up this section by describing a calculation modeling the flow of a hot dense

gas leaving a square trench into a low density and temperature medium. This calculation

is a prototype for modeling laser deposition of energy into an integrated circuit substrate.

Ultimately lasers will be used to dig micron scale trenches in integrated circuits. Before this

can be done, it is important to understand the dynamics of the laser induced flow so that

debris patterns can be categorized or even predicted as a function of energy deposition.

The setup of this problem is straightforward. The entire computational region is em-

bedded in a unit square. Within this region, a box of size 1/8 wide by 7/8 height is cut out

of the computational domain from the upper left corner. This rectangle is a void region,

meaning it is not part of the computational region, but is part of the solid wall exterior

boundary. All boundaries of the computational domain are set to be reflecting boundaries,

so no fluid escapes from the computational region. The 1/8 by 1/8 region in the lower left

has initial density of 1.0 and pressure 10.0. The 7]8 wide by 1 high region in the right part

of the domain, called the ambient region, has initial density and pressure set to 0.1 and 1.0

respectively. The velocities everywhere in the domain are initially set to zero and an ideal

equation of state with a 7 of 1.4 is used to relate density, internal energy and pressure. An

illustration of the problem setup is shown in figure 4.

The major feature of the flow at late time (illustrated in figure 5) is a large bow shock

penetrating into the ambient fluid. Even at this early time, the initial conditions look like

a point source for the bow shock as the shock is already quite spherical. Behind the shock

is the contact discontinuity delineating the boundary between the hot gas and the ambient

gas. As the hot gas flows out into the ambient region, a shear layer forms causing the

vortical rollup of the gas. The size of the rollup region will play an important part in the

size of the debris regions around the trench.

11



• Reflecting Boundary

[] High Pressure Region

[] Ambient Region

Figure 4: A schematic of the initial conditions for the prototype calculation modeling laser

deposition of energy into an integrated circuit substrate.

Table 5 is a breakdown of CPU times for the AMR code when run for ten coarse grid

time steps. The bulk of the time taken outside of the integration routine is taken by the

boundary conditions routines. Within this category, 72 % of the time is taken interpolating

from coarse grids to fine grids. The grind time for this calculation is 25.1 microseconds/cell
which fits within the bounds shown in table 4. Although the grind time is a little under

a factor of two for the best uniform case (256 x 256), the savings in computation costs is

stm great as only a fraction of the computation region is computed using a fine mesh. The

number of cells advanced by the AMR algorithm is only 12% of the number of cells that

would need to be advanced by the uniform case. Therefore a factor of four overall gain in

efficiency is achieved.

6 Conclusions

Despite the disappointing performance of the CM-2 for small grid sizes, we feel that the

two dimensional implementation of AMR is a useful tool. Our overall performance on

an 8K CM-2 is roughly equivalent to a single head of the Y-MP. We hope in the future

that richer array constructs, and layout and alignment directives will make possible further

improvements in the efficiency. Although our current choice of tile size does not scale to
use the full machine in an efficient manner, we believe that three dimensional calculations,

12



(')

Figure 5: Prototype integrated ci_:cuit problem results at time .124 and cycle 70. Figure

(a) is a raster plot of the logarilltm of density, (b) and (c) are plots of x and y momentum

respectively, and (d) is a plot of the logarithm of total energy. Values range from the low

color blue (cold) to the high color red (hot).

13

OR!_INAL PAGE

COLOR PHOTOGRAPH





Routine CPU Time Percent

Integration 587.79 76%

Boundary Cond. 107.35 14%

Cell Updates 10.92 1%

Error Est./Regrid 49.01 6%

Flux Correction 40.96 5%

Fastgraph 23.03

Table 5: Distributionof CPU usage by category withinthe AMR code forthe integrated
circuitcalculation.

(or improved two dimensional calculations with tile size 32) would scale to use the full

Connection Machine. Research along these directions is in progress.

Our greatest disappointment in working on the CM-2 came from its inability to exploit

a coarser grained parallelism we found, on top of the fine grained data parallelism that is

the basis of our approach. The source of this additional parallelism is the multiple grids at

any given level. For example, instead of integrating one grid at a time, integrate all grids

at a given level. Exactly the same operations are done to integrate any grid. We were

particularly excited about the possibility of parallelizing the boundary condition routines.

Ghost cells might possibly cause a load imbalance, but the periodic offsets in the layout

of the grids would mitigate this by distributing the locations of the ghost ceils in memory.

When grids are shifted, the ghost cells often end up interior to the grid, rather than around

the perimeter of the grid. Figure 6 illustrates this schematically.

Unfortunately, version 1.1 of the compiler does not parallelize (vectorize) across serial

dimensions, and all our attempts to restructure the do loops to force it to do so failed. By

integrating (interpolating, updating, etc.) many patches at a single time, we feel the 32

sized tile would be practical, allowing greater overall efficiency in the AMR algorithm. In

fact, when a fully operational version of the CM-5 becomes available this coarser grained

parallelism would make an interesting case study in a hybrid SIMD/MIMD model of com-

putation.

Acknowledgements. It is a pleasure to acknowledge discussions with Scott Baden,

Yanmin Sun, and Steve Hammond during the course of this work. M. Berger was supported

in part by DOE grant DE-FG02-88ER25053, by AFOSR grant 91-0063, and by a PYI, NSF

ASC-8858101. Additional support was provided in part by Cooperative Agreement NCC2-

387 between the National Aeronautics and Space Administration (NASA) and the Univer-

sities Space Research Association (USRA). Work was performed at the Research Institute

for Advanced Computer Science (RIACS), NASA Ames Research Center. J. Saltzman was

14





Figure6: Theboundaryghostcellsareshaded on each grid patch. They are distributed to

a different memory location in each patch.

supported by the U.S. Department of Energy through Los Alamos National Laboratory un-

der contract No. W-7405-ENG-36 with additional support from the Center for Research in

Parallel Computation and DARPA/NSF grant DMS-8919074 UC-Berkeley. We would like

to thank the NAS systems division at NASA Ames for access to their Connection Machine
CM-2.

References

[1] J. Bell, M. J. Berger, J. Saltzman, and M. Welcome. Three dimensional adaptive mesh

refinement for hyperbolic conservation laws. Preprint UCRL-JC-108794, Lawrence

Livermore National Laboratory, Livermore, CA, December 1991.

[2] M. J. Berger. Adaptive mesh refinement for parallel processors. In Proceedings of 1987

SIAM Conference on Parallel Processing, Los Angeles, CA, December 1987.

[3] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.

Journal of Computational Physics, 82:64-84, 1989.

[4] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential

equations. Journal of Computational Physics, 53:482-512, 1984.

15



[5] R. Biswas. Parallel and Adaptive Methods for Hyperbolic PDES. PhD thesis, RPI,
1991.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

It. Biswas and J. Flaherty. Parallel and adaptive methods for hyperbolic partial dif-

ferential equations. In Proceedings of the 7th IMACS International Conference on

Computer Methods for Partial Differential Equations, New Brunswick, N J, June 1992.

J. Cerutti and H. Trease. The free-Lagrange method on the Connection Machine. In

W. C. H. Trease, J. Fritts, editor, Proceedings of the Nezt Free-Lagrange Conference,

Copper Mountain, Colorado, 1991.

P. Colena. Multidimensional upwind methods for hyperbolic conserwtion laws. Journal

of Computational Physics, 87:171-200, 1990.

P. Colella and P. Woodward. The piecewise parabolic method (ppm) for gas-dynamical

simulations. Journal of Computational Physics, 54(1):174-201, April 1984.

W. Crutchfield. Load balancing irregular algorithms. Preprint UCRL-JC-107679,

Lawrence Livermore National Laboratory, Livermore, CA, July 1991.

W. Crutchfield. Parallel adaptive mesh refinement: An example of parallel data en-

capsulation. Preprint UCRL-JC-107680, Lawrence Livermore National Laboratory,

Livermore, CA, July 1991. Submitted to Concurrency, Practice and Experience.

E. D. DaM. Mapping and compiled communication on the Connection Machine system.

In Proceedings of The Fifth Distributed Memory Computering Conference, April 1990.

W. Gropp and D. Keyes. Semi-structured refinement and parallel domain decompo-

sition methods. In J. S. P. Mehrotra and R. Voigt, editors, Unstructured Scientific

Computation on Scalable Multiprocessors. MIT Press, 1992.

S. W. Hammond and T. J. Barth. An efficientmassivelyparallelEuler solverfor

unstructuredgrids.AIAA Journal,30(4):947-952,April 1992.

L. F. Henderson, P. Colella, and E. G. Puckett. On the refraction of shock waves at a

slow-fast gas interface. Journal of Fluid Mechanics, 224:1-27, 1991.

W. D. Hillis. The Connection Machine. MIT Press, 1985.

Y. Kallinderis and A. Vidwans. Parallel adaptive-grid navier-stokes algorithm devel-

opment and implementation. Technical report, University of Texas at Austin, 1992.

Preprint.

16



[18]

[19]

[20]

[21]

[22]

O. Lubeck, M. Simmons, and It. Wasserman. The performance realities of massively

parallel processors: A case study. Preprint LA-UR-92-1463, Los Alamos National

Laboratory, Los Alamos, NM, 1992. Submitted to IEEE Supercomputing '92.

S. McCormick and D. Quinlan. Dynamic grid refinement for partial differential equa-

tions on parallel computers. In Proceedings of 7th International Conference on Finite

Element Methods in Flow Problems. University of Alabama, April 1989.

J. Quirk. An adaptive grid algorithm for computational shock hydrodynamics. PhD

thesis, College of Aeronautics, Cranfield Institute of Technology, 1991.

M. Ruffert. Collisions between a white dwarf and a main-sequence star II. Simula-

tions using multiple nested refined grids. Preprint MPA 657, Max Planck Institute for

Astrophysics, Garching, March 1992. Submitted to Astronomy and Astrophysics.

R. Williams. Performance of dynamic load balancing algorithms for unstructured mesh

calculations. Concurrency: Practice and Experience, 3(5):457-481, October 1991.

17




